

Structural Calculations For:

Boyle Shoring

3603 West Mercer Way Mercer Island, WA

Prepared for: Max Corp

- Job #: 02087-2018-01
- November 15, 2018 Date:

2124 Third Ave, Suite 100, Seattle, WA 98121 | O 206,443,6212 934 Broadway, Suite 100, Tacoma, WA 98402 | O 253,284,9470

Soil Nail Shoring Wall Design:

Soil nail design has been conducted with the soil criteria provided in the geotechnical reports provided by GeoResources LLC, dated 8/26/2018 and 3/3/2016.

The relevant soil criteria utilized for the soil nail wall design are as follows:

Unit Weight [lbs/ft3]	130
Cohesion [psf]	1000
Friction Angle [deg]	33
Water Surface	None

(from GeoResources 3/3/2016 report, page 28 of 41)

Soil nail design follows the guidance of the US Department of Transportation Federal Highway Administration Publication No. FHWA-NHI-14-007

Stability analysis has been conducted utilizing SNAP 2.0 software. An analysis report in included on the following pages.

and the second	
	♥∥
	OPPRINCIPAL
	STRUCTURAL
	ENGINEERING

Boyle Shoring

PROJECT

11/15/2018

DATE PROJ. #

EBG

DESIGN 1 of 21

SHEET

SNAP_2 Report_ Soil Nail Wall Analysis

Name	Company	Designer	Reviewer
Boyle Shoring	SSF	EBG	ABB

Name: Name of project. Company: Name of company Designer: Name of person performing design. Reviewer: Name of person performing project review.

Existing Slope

Existing Slope Points

#	X, ft	Y, ft
1	-70.0	30.0
2	-31.6	32.2
3	0.0	40.0
4	10.0	50.0
5	18.0	54.0
6	26.0	62.0
7	36.0	72.0
8	48.0	86.0
9	57.1	86.0

10	86.0	124.0
11	136.4	124.8

X: Horizontal coordinates Y: Vertical coordinates

<u>Soils</u> **Soil Properties**

Name	Texture	Color	γ's, pcf	¢' , º	δs, °	c', psf	qu, psi	Nc	Nq	Nγ
Soil 1	clay	blue	130	33	22	1000.0	16.0	38.6	26.1	35.2

Name: Name of soil

Texture: Soil/rock Type

Color: Soil color

 γ_s : Effective unit weight of soil

φ': Effective soil friction angle / angle of internal friction

 δ_s : Wall-soil interface friction angle, $\delta = 2/3\phi$

c': Effective cohesion of soil q_u: Ultimate bond strength

Nc: Nc bearing capacity factor

 N_q : N_q bearing capacity factor N_γ : N_γ bearing capacity factor

<u>Nails</u> **Default Factors of Safety**

U	Fy FoS	Fys FoS	F _p FoS	F _{ps} FoS
true	1.80	1.35	2.00	1.50

U: Use same factors of safety for each bar F_y FoS: Factor of safety for yield strength

Fys FoS: Seismic factor of safety for yield strength

 $F_{p} FoS: Factor of safety for pullout$ $F_{ps} FoS: Seismic factor of safety for pullout$ $F_{ps} FoS: Seismic factor of safety for pullout$

Bar Properties

Name	D, in	Dout, in	D _{in} , in	Bar No, Bar #	Fy, ksi
Bar 1	6.0	1.102	0.000	9.0	75.0

Name: Name of bar set D: Drill hole diameter Dout: Outside diameter of bar Din: Inside diameter of bar Bar No: Nail size 3-18 Fy: Steel yield strength of bar

Wall types

Name	Description			
SN Wall 1	Temp Wall			

Name: Name of wall Description: Wall Description

SN Wall 1:

Static Case

Wall: Soil nail wall geometry

Wall: Soil nail wall size and location

Facing	Base, ft	Top, ft	H, ft	θ, °	Emb, ft	Width, ft
Temp SNW 1	36.0,39.0	36.0,72.0	33.0	0.0	0.0	10

Facing: Wall facing Base: Base of wall Top: Top of wall H: Wall height θ: Wall batter angle, degrees from vertical Emb: Embedment, depth below ground surface at toe Width: Width of wall, extending along Z-Axis

Nails: Soil nail wall nail geometry

Shorten T_F false

Shorten T_F: Shorten T-Forces on lower nails due to deformation during construction

Nails: Soil nail sizes and locations

Nail	L, ft	Sv, ft	Sн, ft	δ, °	Cd, ft	0	U
Bar 1	40.00	5.00	5.00	15.0	2.00	false	false

Nail: Bar used for this nail L: Nail length

S_V: Vertical nail spacing

S_H: Horizontal nail spacing

 δ : Nail inclination, degrees from horizontal

Cd: Cantilever distance, vertical distance from top of wall to top nail

O: Offset pattern, true if nails in even rows are offset to midspan, otherwise nails are in a square pattern

U: Use uniform nails

Nail List: Nail properties

<u>Nail[1]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	CdH, ft	н, ft Failure		TForce, kip
36.00,70.00	74.64,59.65	Bar 1	40.00	15.0	2.00	Pullout from Soil 1	36.84	5.7

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal CdH: Cantilever distance, vertical distance from top of wall to this nail

Failure: Failure mode for wall slip surface

Lfail: Distance from nail head to failure surface

TForce: Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	3.2	Soil 1	Punching/Flexure Failure
2	20.40	35.4	Soil 1	Pullout
3	40.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u>Nail[2]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	CdH, ft	Failure	L _{fail} , ft	TForce, kip
36.00,65.00	74.64,54.65	Bar 1	40.00	15.0	7.00	Pullout from Soil 1	31.57	15.2

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal C_{dH}: Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface L_{fail}: Distance from nail head to failure surface T_{Force}: Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	3.2	Soil 1	Punching/Flexure Failure
2	20.40	35.4	Soil 1	Pullout
3	40.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u>Nail[3]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	CdH, ft	Failure	L _{fail} , ft	TForce, kip
36.00,60.00	74.64,49.65	Bar 1	40.00	15.0	12.00	Pullout from Soil 1	25.96	25.4

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal C_{dH} : Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface L_{fail} : Distance from nail head to failure surface T_{Force} : Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
---	----------	--------------	------	---------

1	0.00	3.2	Soil 1	Punching/Flexure Failure
2	20.40	35.4	Soil 1	Pullout
3	40.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u>Nail[4]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	C _{dH} , ft	Failure	L _{fail} , ft	TForce, kip
36.00,55.00	69.81,45.94	Bar 1	35.00	15.0	17.00	Punching/Flexure Failure	19.96	26.1

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal C_{dH} : Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface L_{fail} : Distance from nail head to failure surface T_{Force} : Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	3.1	Soil 1	Punching/Flexure Failure
2	20.30	26.5	Soil 1	Pullout
3	35.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u>Nail[5]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	C _{dH} , ft	Failure	L _{fail} , ft	TForce, kip
36.00,50.00	66.91,41.72	Bar 1	32.00	15.0	22.00	Punching/Flexure Failure	13.53	14.7

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length $\begin{array}{l} \delta: \mbox{ Nail inclination, degrees from horizontal} \\ C_{dH}: \mbox{ Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface} \\ L_{fail}: \mbox{ Distance from nail head to failure surface} \\ T_{Force}: \mbox{ Nail T-force} \end{array}$

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	3.1	Soil 1	Punching/Flexure Failure
2	20.48	20.7	Soil 1	Pullout
3	32.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u>Nail[6]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	CdH, ft	Failure	L _{fail} , ft	TForce, kip
36.00,45.00	64.01,37.49	Bar 1	29.00	15.0	27.00	Punching/Flexure Failure	6.60	6.9

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal C_{dH} : Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface L_{fail} : Distance from nail head to failure surface T_{Force} : Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	3.0	Soil 1	Punching/Flexure Failure
2	20.59	15.2	Soil 1	Pullout
3	29.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

<u> Nail[7]</u>

Head, ft	Tail, ft	Nail	L, ft	δ, °	C _{dH} , ft	Failure	L _{fail} , ft	TForce, kip
36.00,40.00	61.11,33.27	Bar 1	26.00	15.0	32.00	-	0.00	0.0

Head: Start location of nail Tail: End location of nail Nail: Bar used for this nail L: Nail length δ : Nail inclination, degrees from horizontal C_{dH} : Cantilever distance, vertical distance from top of wall to this nail Failure: Failure mode for wall slip surface L_{fail} : Distance from nail head to failure surface T_{Force} : Nail T-force

T-Forces: Nail T-forces

#	Dist, ft	T-Force, kip	Soil	Failure
1	0.00	2.9	Soil 1	Punching/Flexure Failure
2	20.54	9.8	Soil 1	Pullout
3	26.00	0.0	Soil 1	Pullout

Dist: Horizontal distance of T-force from nail head T-Force: Nail T-force Soil: Soil layer at T-force location Failure: Failure mode at T-force location

Checks: Soil nail wall design checks

 \square

Displacement: Long-term wall deformation and displacement parameters

δh/H	κ	δ, in	λ, ft
0.003	1.50	1.2	49.5

- $\delta_{h/H}$: Displacement ratio: (weathered rock/stiff soil: 0.001) (sandy soil: 0.002) (fine-grained soil: 0.003) κ : Damping coefficient used to estimate wall displacement: (weathered rock/stiff soil: 0.8) (sandy soil: 1.25) (fine-grained soil: 1.5)
- δ: Estimated displacement at the top of soil nail wall, L/H ratio outside 0.7 1.0, Estimation may not be accurate
- λ : Horizontal distance behind soil nail wall where ground deformation can be significant

Vars: Soil nail internal variables

Ex Vars: External stability intermediate variables

θ, °	β, °	qs, psf	\$, °	\$ f, 0	γı, pcf	γ ₂ , pcf	c, psf	δ, °
0.0	38.4	0	33.0	33.0	130.0	130.0	1000.0	22.0

θ: Inclination of back wall measured CCW from vertical plane

 $\beta:$ Inclination of ground slope behind wall measured CCW from horiz. plane

qs: Surcharge load behind wall

φ: Internal friction angle of weakest retained soil

 $\varphi_f\!\!:$ Internal friction angle of weakest foundation soil

 $\gamma_l\colon \text{Unit weight of weakest retained soil}$

 $\gamma_2:$ Unit weight of weakest foundation soil

c: Cohesion - weakest foundation soil

 δ : Wall/soil interface friction angle

Ex Vars 2: More external stability intermediate variables

B, ft	h, ft	Nγ	Nc	Nq	H2, ft	Ka	S, °
33.4	59.4	35.2	38.6	26.1	54.6	0.759	7.116

B: Effective width of wall at the base

h: Effective total height of soil at back of reinforced soil mass

Ny: See Fig 4.4.7.1.1.4B and Table 4.4.7.1A AASHTO

Nc: Bearing capacity coefficient - weakest foundation soil

 N_q : Bearing capacity coefficient - weakest foundation soil

H2: A height near the back of wall for calculating PIR and PAE

K_a: Active earth pressure coefficient - no seismic forces S: Angle relating the horizontal and vertical seismic coefficients

Ex Vars 3: More external stability intermediate variables

F _T , lbf/ft	Fн, lbf/ft	Fv, lbf/ft	V2, lbf/ft	V1, lbf/ft	F2, lbf/ft
174206.5	136581.9	108135.5	57386.5	143257.4	0.0

 $\begin{array}{l} F_{T}: \mbox{ Lateral earth pressure} \\ F_{H}: \mbox{ Horizontal lateral earth pressure} \\ F_{V}: \mbox{ Vertical lateral earth pressure} \\ V_{2}: \mbox{ Weight of soil above wall} \\ V_{1}: \mbox{ Weight of soil above wall} \\ F_{2}: \mbox{ Surcharge load} \end{array}$

Ex Vars 4: More external stability intermediate variables

P _{IR} , lbf/ft	Y _{IR} , ft	σ _v , psf	q _{ult} , psf	q _{allow} , psf
42984.9	22.4	10405.6	115015	46006

PIR: Horizontal inertial force

 V_{IR} : V-coordinate of centroid of mass for inertial force σ_v : Vertical effective stress at base of footing

qult: Terzaghi bearing capacity

 q_{allow} : Terzaghi bearing capacity $q_{allow} = q_{ult}/FOS$

Construction #	Resolution, ft	MinDepth, ft	Seismics	Center, ft	Radius, ft	FoS
1	2.1	2.0	false	-4.5,156.0	122.0	1.78

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Depth}: Minimum height of failure circle arc. Use this to remove small failure circles.

Seismics: Select to use seismic case, unselect for static case

Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	Min _{Depth} , ft	Seismics	Center, ft	Radius, ft	FoS
2	2.1	2.0	false	-8.0,185.8	146.7	1.80

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Deph}: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	Min _{Depth} , ft	Seismics	Center, ft	Radius, ft	FoS
3	2.1	2.0	false	-1.1,173.9	140.9	1.81

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Deph}: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	Min _{Depth} , ft	Seismics	Center, ft	Radius, ft	FoS
4	2.1	2.0	false	-52.8,215.6	184.9	1.74

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Deph}: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	MinDepth, ft	Seismics	Center, ft	Radius, ft	FoS
5	2.1	2.0	false	-28.7,197.7	163.1	1.63

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences

Resolution: Resolution for Bishop Method (smaller values require longer computation time)

 $\operatorname{Kin}_{\operatorname{Deph}}$: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle

Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	Min _{Depth} , ft	Seismics	Center, ft	Radius, ft	FoS
6	2.1	2.0	false	-32.1,167.9	142.2	1.53

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Deph}: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	MinDepth, ft	Seismics	Center, ft	Radius, ft	FoS
7	2.1	2.0	false	-21.8,185.8	156.3	1.50

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Depth}: Minimum height of failure circle arc. Use this to remove small failure circles.

Seismics: Select to use seismic case, unselect for static case

Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle

Construction #	Resolution, ft	Min _{Depth} , ft	Seismics	Center, ft	Radius, ft	FoS
8	2.1	2.0	false	-21.8,185.8	156.3	1.50

Construction #: Construction number, adds stage cuts and nails according to assigned construction sequences Resolution: Resolution for Bishop Method (smaller values require longer computation time) Min_{Depth}: Minimum height of failure circle arc. Use this to remove small failure circles. Seismics: Select to use seismic case, unselect for static case Center: Center of minimum factor of safety failure circle Radius: Radius of minimum factor of safety failure circle